A Bayesian Treatment of Social Links in Recommender Systems

نویسندگان

  • Mike Gartrell
  • Ulrich Paquet
  • Ralf Herbrich
چکیده

Recommender systems are increasingly driving user experiences on the Internet. This personalization is often achieved through the factorization of a large but sparse observation matrix of user-item feedback signals. In instances where the user's social network is known, its inclusion can significantly improve recommendations for cold start users. There are numerous ways in which the network can be incorporated into a probabilistic graphical model. We propose and investigate two ways for including a social network, either as a Markov Random Field that describes a user similarity in the prior over user features, or an explicit model that treats social links as observations. State of the art performance is reported on the Flixster online social network dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data

The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of us...

متن کامل

A Bayesian Treatment of Social Links in Recommender Systems ; CU-CS-1092-12

Recommender systems are increasingly driving user experiences on the Internet. This personalization is often achieved through the factorization of a large but sparse observation matrix of user-item feedback signals. In instances where the user's social network is known, its inclusion can significantly improve recommendations for cold start users. There are numerous ways in which the network can...

متن کامل

A Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information

The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...

متن کامل

Merging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems

In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...

متن کامل

A social recommender system based on matrix factorization considering dynamics of user preferences

With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012